

Министерство природных ресурсов и экологии Российской Федерации Федеральная служба по гидрометеорологии и мониторингу окружающей среды

ФЕДЕРАЛЬНОЕ ГОСУДАРСТВЕННОЕ БЮДЖЕТНОЕ УЧРЕЖДЕНИЕ «ДАЛЬНЕВОСТОЧНЫЙ РЕГИОНАЛЬНЫЙ НАУЧНО-ИССЛЕДОВАТЕЛЬСКИЙ ГИДРОМЕТЕОРОЛОГИЧЕСКИЙ ИНСТИТУТ»

(ФГБУ «ДВНИГМИ»)

Аналитический материал

AM.2024.05

Анализ многолетних трендов загрязнения морской среды

РЕФЕРАТ

На основе результатов измерений, произведённых в рамках программы Государственной наблюдений сети (ГНС), в обзоре представлен анализ многолетних изменений загрязнения морской среды на акваториях залива Петра Великого, произведенный с использованием индексов загрязненности вод (ИЗВ). Определены классы качества вод, тенденции и периоды повышенных и пониженных значений.

Авторы:

Круц А.А. (нач. РЦОД ДВ, ФГБУ «ДВНИГМИ»)

Дата составления: 02.12.2024

Оглавление

Введение	4
Методы	4
Исходные данные	
Выводы	6
Список использованных источников	7

Введение

Данные наблюдений в рамках программы Государственной наблюдений сети (ГНС) в зал. Петра Великого, наряду с детальным изучением гидрологического режима, используются для оценки современного экологического состояния морской среды под влиянием промышленной и хозяйственной деятельности в густонаселенных районах южного Приморья, определения тенденции его развития, а в случае отрицательной динамики своевременного принятия необходимых мер для предотвращения негативных последствий.

В данном обзоре анализ многолетних изменений загрязнения морской среды произведен с использованием индексов загрязненности вод (ИЗВ), которые позволяют отнести воды акваторий исследуемого района к определенному классу качества.

Методы

Правила расчета индекса загрязненности вод определены «Методическими Рекомендациями по формализованной комплексной оценке качества поверхностных и морских вод по гидрохимическим показателям» (МР-1988) и уточнены авторами ежегодников «Качество морских вод по гидрохимическим показателям» (ФГБУ «ГОИН»).

Для морских вод при расчете индекса используют четыре параметра с обязательным включением в этот список растворенного кислорода. Формула расчета ИЗВ:

$$H3B = \sum_{i=1}^{4} \frac{C_i}{\Pi \square K_i} \div 4$$

где Ci — концентрация трех наиболее значительных загрязнителей, среднее содержание которых в воде исследуемой акватории в наибольшей степени превышало ПДК. Четвертым обязательным параметром является содержание растворенного в воде кислорода, для которого значение в формуле рассчитывается делением норматива ПДК=6 мг O_2 /дм³ на его реальное содержание.

Технология расчета индекса содержит несколько последовательных стадий: 1) выбор уровня усреднения данных по пространству (одиночная станция, группа станций или полностью контролируемый район, например бухта, залив, эстуарный район реки и т.д.) и по времени (месяц, сезон или год); для выбранных станций и периода времени рассчитывается средняя концентрация всех наблюдаемых параметров; 2) для всех измеренных и нормируемых параметров морских вод, т.е. перечисленных в списке Предельно Допустимой Концентрации (ПДК-2016), рассчитывается концентрация в

единицах ПДК; 3) из полученного списка средней концентрации веществ в ПДК выбираются ровно три наиболее высоких значения для загрязняющих веществ, которые могут считаться «приоритетными» для рассматриваемой акватории в анализируемый период времени; значения складываются; 4) норматив для кислорода 6 мг О₂/дм³ надо разделить на среднее значение концентрации кислорода в мг О₂/дм³; полученный результат добавить к сумме трех загрязнителей; 5) суммарное значение разделить на четыре и оценить класс качества воды по полученному значению ИЗВ (Таблица 1) [1].

Таблица 1 – Классы качества вод и значения ИЗВ

Класс качества	Диапазон значений ИЗВ			
Очень чистые	Ι	ИЗВ ≤ 0,25		
Чистые	II	0,25 < ¥3B ≤ 0,75		
Умеренно загрязненные	III	0,75 < ¥3B ≤ 1,25		
Загрязненные	IV	1,25 < H3B ≤ 1,75		
Грязные	V	1,75 < VI3B ≤ 3,00		

Исходные данные

Конкретные значения ИЗВ по годам для каждой из описываемой акватории получены в Лаборатории по мониторингу загрязнения природных вод и почв Центра по мониторингу загрязнения окружающей среды ФГБУ «Приморское управление по гидрометеорологии и мониторингу окружающей среды» (ЦМС ФГБУ «Приморского УГМС») на основе материалов совместной, ФГБУ «ДВНИГМИ» и ФГБУ «Приморское УГМС», базы данных «ОГСН залива Петра Великого» (Таблица 2).

Таблица 2 – Значения ИЗВ для акваторий по годам

Акватории	Год											
ARDUTOPHI	2012	2013	2014	2015	2016	2017	2018	2019	2020	2021	2022	2023
Бухта Золотой Рог	2,50	2,25	1,68	1,40	2,20	2,20	1,78	1,47	1,26	1,08	1,17	1,47
Бухта Диомид	2,13	1,13	1,33	0,97	1,51	2,20	1,58	1,45	1,18	1,09	1,19	1,55
Пролив Босфор Восточный	1,53	1,02	1,09	0,75	1,58	2,30	2,00	1,24	1,21	0,98	1,03	1,66
Амурский залив	1,60	1,05	0,86	1,04	1,59	1,02	1,4	1,52	1,03	1,13	0,99	1,15
Уссурийский залив	1,71	1,02	0,84	1,09	1,38	2,30	1,55	1,41	1,04	0,90	1,10	0,93
Залив Находка	1,50	1,07	0,89	0,81	1,55	1,45	1,43	1,65	1,04	0,99	1,17	1,27

Изменение по годам величин индекса загрязнённости вод акваторий залива Петра Великого представлено на рисунке 1

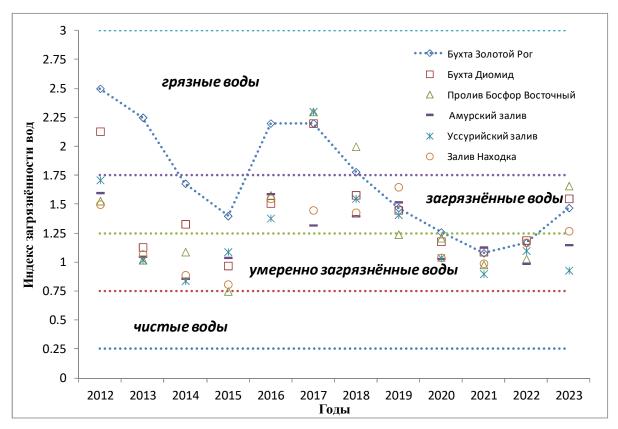


Рисунок 1 – Изменение по годам величин индекса загрязнённости вод акваторий залива Петра Великого

Выводы

Рассматривая имеющиеся данные, можно сделать некоторые выводы:

- 1. Самой загрязнённой акваторией залива Петра Великого является бухта Золотой Рог. В период по 2019 год её воды относились к IV и V классу качества («загрязнённые» и «грязные» воды). Вместе с тем, с 2020 по 2022 гг. наблюдалось уменьшение загрязнения всех акваторий залива Петра Великого, включая б. Золотой Рог, до III класса качества («умеренно загрязнённые» воды).
- 2. В 2023 году загрязнённость акваторий, непосредственно относящихся к порту Владивосток (б. Золотой Рог, б. Диомид, пр. Босфор Восточный) снова повысилась до IV класса качества.
- 3. Воды основной части прибрежных акваторий залива Петра Великий относятся к III и IV классу качества (умеренно загрязнённые» и «загрязнённые» воды. После некоторого повышения и стабилизации загрязнённости в период с 2016 по 2019 гг., с 2020 года наблюдается стабильное уменьшение загрязнённости вод большей части акваторий.

4. Наряду с тем, что наименее загрязнёнными являются воды Уссурийского залива, именно на этой акватории наблюдается устойчивый тренд на улучшение качества вод. В 2023 г. ИЗВ Уссурийского залива достигал минимальных за десять лет значений.

Список использованных источников

1. Качество морских вод по гидрохимическим показателям. Ежегодник 2022 / Под общей редакцией А.Н. Коршенко. – Ижевск: ООО «Принт», 2024. – 232 с.